Brief description:
。。给定一个 N 个顶点的无向图(稠密)、回答 Q 次询问。
问一条边的权值增加为 ci’ 后,新图的 MST。
(. .. N <= 3000, Q <= 10^6.. .) ..
Analysis:
下面介绍 O(mlogm) 算法、设原图的最小生成树为 T,若修改一条非树边、那么对结果没有影响(修改操作单调递增).. .
如果是树边、那么这条边可能会因为这次修改操作而被一条非树边替换掉、不难发现用以替换的边是唯一的。
于是得到算法,对每一条非树边、松弛生成树上这两点之间路径的所有树边。
则对于每一询问 (a, b, w’) .. .
if (!树边) return mst; else return mst - w[a][b] + min(w', s[a][b]);
其中 s[a][b] 是嗯嗯嗯嗯嗯的意思。
(如果使用 Kruskal() 算法求解最小生成树。。那么松弛的过程可以用并查集优化到 O(m) 。。。
次小生成树的算法有很多,对于这题、今年北京现场赛区 Problem A 的算法可能并不适用?。。)
/** ` Micro Mezzo Macro Flation -- Overheated Economy ., **/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <cstring>
#include <complex>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
#define REP(i, n) for (int i=0;i<int(n);++i)
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i)
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i)
#define REP_1(i, n) for (int i=1;i<=int(n);++i)
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i)
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i)
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i)
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i)
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i)
#define REP_N(i, n) for (i=0;i<int(n);++i)
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i)
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i)
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i)
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i)
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i)
#define REP_1_N(i, n) for (i=1;i<=int(n);++i)
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i)
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i)
#define REP_C_N(i, n) for (n____=int(n),i=0;i<n____;++i)
#define FOR_C_N(i, a, b) for (b____=int(b),i=a;i<b____;++i)
#define DWN_C_N(i, b, a) for (a____=int(a),i=b-1;i>=a____;--i)
#define REP_1_C_N(i, n) for (n____=int(n),i=1;i<=n____;++i)
#define FOR_1_C_N(i, a, b) for (b____=int(b),i=a;i<=b____;++i)
#define DWN_1_C_N(i, b, a) for (a____=int(a),i=b;i>=a____;--i)
#define DO(n) while(n--)
#define DO_C(n) int n____ = n; while(n____--)
#define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_)
#define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_)
#define SQZ(i, j, a, b) for (int i=int(a),j=int(b)-1;i<j;++i,--j)
#define SQZ_1(i, j, a, b) for (int i=int(a),j=int(b);i<=j;++i,--j)
#define REP_2(i, j, n, m) REP(i, n) REP(j, m)
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)
#define ALL(A) A.begin(), A.end()
#define LLA(A) A.rbegin(), A.rend()
#define CPY(A, B) memcpy(A, B, sizeof(A))
#define INS(A, P, B) A.insert(A.begin() + P, B)
#define ERS(A, P) A.erase(A.begin() + P)
#define BSC(A, X) find(ALL(A), X) // != A.end()
#define CTN(T, x) (T.find(x) != T.end())
#define SZ(A) int(A.size())
#define PB push_back
#define MP(A, B) make_pair(A, B)
#define Rush int T____; RD(T____); DO(T____)
#pragma comment(linker, "/STACK:36777216")
#pragma GCC optimize ("O2")
#define Ruby system("ruby main.rb")
#define Haskell system("runghc main.hs")
#define Pascal system("fpc main.pas")
typedef long long LL;
typedef double DB;
typedef unsigned UINT;
typedef unsigned long long ULL;
typedef vector<int> VI;
typedef vector<char> VC;
typedef vector<string> VS;
typedef vector<LL> VL;
typedef vector<DB> VD;
typedef set<int> SI;
typedef set<string> SS;
typedef set<LL> SL;
typedef set<DB> SD;
typedef map<int, int> MII;
typedef map<string, int> MSI;
typedef map<LL, int> MLI;
typedef map<DB, int> MDI;
typedef map<int, bool> MIB;
typedef map<string, bool> MSB;
typedef map<LL, bool> MLB;
typedef map<DB, bool> MDB;
typedef pair<int, int> PII;
typedef pair<int, bool> PIB;
typedef vector<PII> VII;
typedef vector<VI> VVI;
typedef vector<VII> VVII;
typedef set<PII> SII;
typedef map<PII, int> MPIII;
typedef map<PII, bool> MPIIB;
/** I/O Accelerator **/
/* ... :" We are I/O Accelerator ... Use us at your own risk ;) ... " .. */
template<class T> inline void RD(T &);
template<class T> inline void OT(const T &);
inline int RD(){ int x; RD(x); return x;}
template<class T> inline T& _RD(T &x){ RD(x); return x;}
inline void RC(char &c){scanf(" %c", &c);}
inline void RS(char *s){scanf("%s", s);}
template<class T0, class T1> inline void RD(T0 &x0, T1 &x1){RD(x0), RD(x1);}
template<class T0, class T1, class T2> inline void RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2);}
template<class T0, class T1, class T2, class T3> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3);}
template<class T0, class T1, class T2, class T3, class T4> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6);}
template<class T0, class T1> inline void OT(T0 &x0, T1 &x1){OT(x0), OT(x1);}
template<class T0, class T1, class T2> inline void OT(T0 &x0, T1 &x1, T2 &x2){OT(x0), OT(x1), OT(x2);}
template<class T0, class T1, class T2, class T3> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);}
template<class T0, class T1, class T2, class T3, class T4> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));}
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);}
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);}
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}
template<class T> inline void CLR(T &A){A.clear();}
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);}
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);}
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);}
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));}
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);}
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2){FLC(A0), FLC(A1), FLC(A2);}
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3){FLC(A0), FLC(A1), FLC(A2), FLC(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){FLC(A0), FLC(A1), FLC(A2), FLC(A3), FLC(A4), FLC(A5), FLC(A6);}
template<class T> inline void SRT(T &A){sort(ALL(A));}
template<class T, class C> inline void SRT(T &A, C B){sort(ALL(A), B);}
/** Add - On **/
const int MOD = 1000000007;
const int INF = 0x7f7f7f7f;
const DB EPS = 1e-6;
const DB OO = 1e15;
const DB PI = acos(-1.0);
// <<= ` 0. Daily Use .,
template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;}
template<class T> inline void checkMax(T &a,const T b){if (b>a) a=b;}
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;}
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;}
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);}
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);}
template<class T> inline T sqr(T a){return a*a;}
template<class T> inline T cub(T a){return a*a*a;}
int Ceil(int x, int y){return (x - 1) / y + 1;}
// <<= ` 1. Bitwise Operation .,
inline bool _1(int x, int i){return x & 1<<i;}
inline int _1(int i){return 1<<i;}
inline int _U(int i){return _1(i) - 1;};
inline int count_bits(int x){
    x = (x & 0x55555555) + ((x & 0xaaaaaaaa) >> 1);
    x = (x & 0x33333333) + ((x & 0xcccccccc) >> 2);
    x = (x & 0x0f0f0f0f) + ((x & 0xf0f0f0f0) >> 4);
    x = (x & 0x00ff00ff) + ((x & 0xff00ff00) >> 8);
    x = (x & 0x0000ffff) + ((x & 0xffff0000) >> 16);
    return x;
}
template<class T> inline T low_bit(T x) {
    return x & -x;
}
template<class T> inline T high_bit(T x) {
    T p = low_bit(x);
    while (p != x) x -= p, p = low_bit(x);
    return p;
}
// <<= ` 2. Modular Arithmetic Basic .,
inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;}
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;}
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;}
inline int dff(int a, int b){a -= b; if (a < 0) a  += MOD; return a;}
inline void MUL(int &a, int b){a = int((LL)a * b % MOD);}
inline int pdt(int a, int b){return int((LL)a * b % MOD);}
// <<= ' 0. I/O Accelerator interface .,
template<class T> inline void RD(T &x){
    //cin >> x;
    //scanf("%d", &x);
    char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';
    //char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0';
}
int ____Case;
template<class T> inline void OT(const T &x){
    //cout << x << endl;
    printf("%.4lf\n", x);
    //printf("%.2lf\n", x);
    //printf("Case %d: %d\n", ++____Case, x);
}
#define For_each(it, A) for (SII::iterator it = A.begin(); it != A.end(); ++it)
/* .................................................................................................................................. */
const int N = 3009, M = N * N;
int w[N][N], s[N][N]; bool InMst[N][N]; int P[N], R[N];
PII E[M]; VI adj[N]; bool c[N]; int d[N]; int prd[N], vis[N], m, _i;
int n, q, mst;
void Make(int x){
    P[x] = x, R[x] = 0;
}
int Find(int x){
    if (P[x] != x) P[x] = Find(P[x]);
    return P[x];
}
void Union(int x, int y){
    if (R[x] < R[y]) P[y] = x;
    else {
        if (R[x] == R[y]) R[y]++;
        P[x] = y;
    }
}
void Prim1(){
    m = 0, RST(c), FLC(d, 0x7f), CPY(s, w), d[0] = 0;
    REP(i, n){
        int u = 0; while (c[u]) ++u; FOR(i, u+1, n) if (!c[i] && d[i] < d[u]) u = i;
        if (d[u]) s[prd[u]][u] = INF - 1, E[m++] = MP(prd[u], u); c[u] = true;
        REP(v, n) if (!c[v] && w[u][v] < d[v]) d[v] = w[u][v], prd[v] = u;
    }
}
void Prim2(){
    RST(c), FLC(d, 0x7f), d[0] = 0;
    REP(i, n){
        int u = 0; while(c[u]) ++u; FOR(i, u+1, n) if (!c[i] && d[i] < d[u]) u = i;
        if (d[u]) s[prd[u]][u] = INF - 1, E[m++] = MP(prd[u], u); c[u] = true;
        REP(v, n) if (!c[v] && s[u][v] < d[v]) d[v] = s[u][v], prd[v] = u;
    }
}
#define a first
#define b second
bool comp(PII x, PII y){
    return w[x.a][x.b] < w[y.a][y.b];
}
void Kruskal(){
    sort(E, E+m, comp); REP(i, n) Make(i); RST(InMst); mst = 0;
    REP(i, n) CLR(adj[i]);
    REP(i, m){
        if (Find(E[i].a) == Find(E[i].b)) continue; Union(Find(E[i].a), Find(E[i].b));
        InMst[E[i].a][E[i].b] = true, mst += w[E[i].a][E[i].b], adj[E[i].a].PB(E[i].b), adj[E[i].b].PB(E[i].a);
    }
}
#define v adj[u][i]
void dfs(int u = 0, int p = -1){
    prd[u] = p; REP(i, SZ(adj[u])) if (v != p){
        dfs(v, u);
    }
}
#undef v
int lca(int a, int b){
    while (a != 0){
        vis[a] = _i;
        a = prd[a];
    }
    vis[0] = _i;
    while (vis[b] != _i){
        b = prd[b];
    }
    return b;
}
void link(int a, int b, int c){
    int p = lca(a, b), t;
#define Cloze(a, b) if (!s[a][b]) s[a][b] = s[b][a] = c
    while (a != p){
        Cloze(a, prd[a]);
        t = prd[a], prd[a] = p, a = t;
    }
    while (b != p){
        Cloze(b, prd[b]);
        t = prd[b], prd[b] = p, b = t;
    }
}
void Relax(){
    RST(vis, prd, s); dfs(); REP(i, m){
        if (InMst[E[i].a][E[i].b]) continue; _i = i + 1;
        link(E[i].a, E[i].b, w[E[i].a][E[i].b]);
    }
    REP(i, n) FOR(j, i+1, n) if (!s[i][j]) s[i][j] = INF;
}
#undef a
#undef b
int main(){
    //freopen("in.txt", "r", stdin);
    while (scanf("%d %d", &n, &m) != EOF && n){
        int a, b; FLC(w, 0x7f); REP(i, m){
            RD(a, b); if (a > b) swap(a, b); RD(w[a][b]);
        }
        if (false && m > 2 * n) Prim1(), Prim2();
        else {m = 0; REP(i, n) FOR(j, i+1, n) if (w[a][b] != INF) E[m++] = MP(i, j);}
        Kruskal(); Relax();
        int sum = 0; int ww; DO_C(_RD(q)){
            RD(a, b, ww); if (a > b) swap(a, b);
            if (!InMst[a][b]) sum += mst;
            else sum += mst - w[a][b] + min(ww, s[a][b]);
        }
        OT(DB(sum) / q);
    }
}
Further discussion:
求 O(n2) 算法!!!
External link:
http://acm.hdu.edu.cn/showproblem.php?pid=4126
http://www.cppblog.com/MatoNo1/archive/2011/11/16/149812.html
https://www.shuizilong.com/house/wp-admin/post.php?post=2498&action=edit&message=1




 Alca
 Alca Amber
 Amber Belleve Invis
 Belleve Invis Chensiting123
 Chensiting123 Edward_mj
 Edward_mj Fotile96
 Fotile96 Hlworld
 Hlworld Kuangbin
 Kuangbin Liyaos
 Liyaos Lwins
 Lwins LYPenny
 LYPenny Mato 完整版
 Mato 完整版 Mikeni2006
 Mikeni2006 Mzry
 Mzry Nagatsuki
 Nagatsuki Neko13
 Neko13 Oneplus
 Oneplus Rukata
 Rukata Seter
 Seter Sevenkplus
 Sevenkplus Sevenzero
 Sevenzero Shirleycrow
 Shirleycrow Vfleaking
 Vfleaking wangzhpp
 wangzhpp Watashi
 Watashi WJMZBMR
 WJMZBMR Wywcgs
 Wywcgs XadillaX
 XadillaX Yangzhe
 Yangzhe 三途川玉子
 三途川玉子 About.me
 About.me Vijos
 Vijos
