Brief description:
略。)
Analysis:
记代价函数 $$!w(x) = ax^2 + bx + c$$
然后:
$$! \begin{aligned} f_i &= \min_{0 \leq j < i}\big\{ f_j + w(s_i-s_j)\big\} \\ &= \min_{0 \leq j < i}\big\{ f_j + as_j^2 - bs_j -2as_is_j\big\} + w(s_i) \end{aligned}$$ 写成斜率优化的标准形式,b = kx + y 这里有:
- $$k = -2as_i$$
- $$x = s_j $$
- $$y = f_j + as_j^2 – bs_j $$
这里 $$x$$ 和 $$k$$ 均单调(因为 $$s_i$$ 单调),单调队列即可。
//}/* .................................................................................................................................. */
const int N = int(1e6) + 9;
LL f[N], s[N], a, b, c; int q[N], cz, op;
int n;
LL det(LL x1, LL y1, LL x2, LL y2){
return x1*y2 - x2*y1;
}
#define k (-2*a*s[i])
#define x(j) (s[j])
#define y(j) (f[j]+a*sqr(x(j)) - b*(x(j)))
#define eval(j) (k*x(j)+y(j))
int dett(int p0, int p1, int p2){
LL t = det(x(p1)-x(p0), y(p1)-y(p0), x(p2)-x(p0), y(p2)-y(p0));
return t < 0 ? -1 : t > 0;
}
LL w(LL x){
return a*x*x+b*x+c;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif
RD(n); RDD(a, b, c); REP_1(i, n) s[i] = s[i-1] + RD();
cz = 0, op = 0; REP_1(i, n){
while (cz < op && eval(q[cz]) <= eval(q[cz+1])) ++cz; f[i] = eval(q[cz]) + w(s[i]);
while (cz < op && dett(q[op-1], q[op], i) >= 0) --op; q[++op] = i;
}
OT(f[n]);
}




Alca
Amber
Belleve Invis
Chensiting123
Edward_mj
Fotile96
Hlworld
Kuangbin
Liyaos
Lwins
LYPenny
Mato 完整版
Mikeni2006
Mzry
Nagatsuki
Neko13
Oneplus
Rukata
Seter
Sevenkplus
Sevenzero
Shirleycrow
Vfleaking
wangzhpp
Watashi
WJMZBMR
Wywcgs
XadillaX
Yangzhe
三途川玉子
About.me
Vijos
